CS 410/510 Compiler Design Theory
The following notes are what I am using in class to lecture with. They are not to be considered complete, or a substitute for your own notes. You should use these notes, and your own, as guides for your reading and study outside of class. The textbook will provide you with additional information on each of the subjects introduced below.

Select()

Select(): A function that gives the set of terminal symbols, that can be derived according to the given nonterminal symbol and its respective productions.

Select(A -> w) = First(First(w) Follow(A))

Example:

E -> TA First(E) = {(, id} Follow(E) = {$,)}

A -> +TA | ε First(A) = {+, ε} Follow(A) = {$,)}

T -> FB First(T) = {(, id} Follow(B) = {+,), $}

B -> *FB | ε First(B) = {*, ε} Follow(B) = {+,), $}

F -> (E) | id First(F) = {(, id} Follow(F) = {+,),*,$}

Select(E -> TA) = First (First(TA) Follow(E))

 = First ({(, id} {$,)})

 = First ({ ($, (), id$, id) })

 = {(, id} //first symbol in each pair above

Select(A -> +TA) = First (First(+TA) Follow(A))
 = First ({+} {$,)})

 = First ({+$, $)})

 = {+}

Select(A -> ε) = First (First(ε) Follow(A))

 = First ({ ε} {$,)})

 = {$,)}

For the two productions, A -> +TA and A -> ε, the selection sets do not have common symbols of length 1. This proves that the nonterminal A has the LL(1) property. If all nonterminals in a grammar have the LL(1) property, the grammar is also LL(1). This test is also called the Pairwise Disjoint Test

A -> αi and A -> αj Select(A -> αi) ∩ Select(A -> αj) = 0

Predictive Parsing Tables
E -> TA Select(E) = {(, id}

A -> +TA | ε Select(A) = {+} {$,)}

T -> FB Select(T) = {(, id}

B -> *FB | ε Select(B) = {*} {+,), $}

F -> (E) | id Select(F) = {(} {id}

 Look Ahead Token

	Nonterminal
	(
	id
	+
	*
)
	$

	E
	TA
	TA
	
	
	
	

	A
	
	
	+TA
	
	ε
	ε

	T
	FB
	FB
	
	
	
	

	B
	
	
	ε
	*FB
	ε
	ε

	F
	(E)
	id
	
	
	
	

1. Push the start symbol on the stack
2. top_of_stack = pop()

3. rc = lookup(top_of_stack, next_token, new_stack_symbols)

4. push(new_stack_symbols)

5. top_of_stack = pop()

6. if (top_of_stack = next_token)

7. lex(next_token)

8. top_of_stack = pop()

9. goto 6

10. if (top_of_stack != empty_stack)

11. goto 3

12. else push(top_of_stack)

Given: id + id
 F id + F id
 T B B B T T B B B

 E A A A A A A A A A A A

Z Z Z Z Z Z Z Z Z Z Z Z Z Z

Recursive Descent Parsing
E -> TA 1. Each nonterminal represents a procedure

A -> +TA | ε call.

T -> FB

B -> *FB | ε 2. All the productions of a nonterminal are

F -> (E) | id selections in the nonterminal’s procedure

Let next_token be the next token in the input stream. match() is the action of recognizing the next token in the parsing process and advancing the input stream pointer, such that next_token points to the next token to be parsed. match() is effectively a call to the lexical analyzer to get the next token.

Input stream: a + b $ next_token == a

 match()

 next_token == +

 match()

 next_token == b

 …

E() A()
 { {
 T(); if (next_token == [plus])
 A(); {
 } match();
 T();
 A();
T() }
 { }
 F();

 B(); F()
 } {
 if (next_token == [id])
B() {
 { match();
 if (next_token == [ast]) }
 { else if (next_token == [lparen])
 match(); {
 F(); match();

 B(); E();

 } if (next_token == [rparen])
 } {

 match();

 }

 else ERROR

 }

 else ERROR

 } // end of F()

Error Detection and Recovery

Example Categories of Errors:

1. Lexical – Ill-formed numeric literals and identifiers. Characters not in the language

2. Syntactic – Unbalanced parenthesis and punctuation.

3. Semantic – Type mismatches

4. Logical – Infinite loops. Code is correct syntactically but it does not operate as intended.

Goals of Error Handling:

1. Detect the presence of errors and produce, “meaningful” diagnostics.

2. To recover quickly enough to be able to detect subsequent errors.

3. Error handling components should not significantly slow down the compilation of syntactically correct programs.

Error Recovery Strategies:

1. Phrase Level Recovery: Replace, delete, or insert a token as a prefix to the input which will enable the parser to continue. Inserting tokens can lead to infinite loops.

2. Error Productions: Add rules to the grammar that describe the erroneous syntax. This strategy can resolve many, but not all potential errors.

3. Global Correction: Replace incorrect input with input that is correct and requires the fewest changes to create. This requires techniques that are costly in terms of time and space.

4. Panic Mode: Discard tokens until a, “synchronization” token is found. Such tokens are often delimiters, such as, ‘;’, ‘}’, ‘)’, ‘end’, whose role in the source program are clear. This method can fail to detect multiple errors in close proximity.

Panic Mode Error Recovery Strategies:
An error is detected when:

1. For a table based implementation: given nonterminal ‘A’ on top of the stack, and ‘a’ as the next input token, parsing table lookup(A, a) returns an error.

2. For a table based implementation: The terminal on top of the stack does not match the next input token.

3. For a recursive descent implementation: A specific token is expected to be next in the input, but is not.

Strategies for resolution:

Recursive Descent: Throw out input tokens until a synchronization token is found. Return up the tree until a procedure is reached that can begin parsing from the synchronization token. Or, return to a procedure that has a set of synchronization tokens, and throw out tokens until one is found.
Table Parser:

1. If nonterminal ‘A’ is non the stack, let First(A) be the set of synchronization tokens. Throw out input tokens until one in First(A) is found.

2. If nonterminal ‘A’ is on the stack, let Follow(A) be the set of synchronization tokens. Pop ‘A’ off the stack and then throw out input tokens until one in Follow(A) is found. (Likely will need to add other tokens, such as statement terminators).

3. If A -> ε is an available production rule, try it.
